Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Front Immunol ; 15: 1369087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617839

RESUMO

Introduction: The ErbB-2.1(TOB1) signaling transducer protein is a tumor-suppressive protein that actively suppresses the malignant phenotype of gastric cancer cells. Yet, TOB1 negatively regulates the activation and growth of different immune cells. Understanding the expression and role of TOB1 in the gastric cancer immune environment is crucial to maximize its potential in targeted immunotherapy. Methods: This study employed multiplex immunofluorescence analysis to precisely delineate and quantify the expression of TOB1 in immune cells within gastric cancer tissue microarrays. Univariate and multivariate Cox analyses were performed to assess the influence of clinical-pathological parameters, immune cells, TOB1, and double-positive cells on the prognosis of gastric cancer patients. Subsequent experiments included co-culture assays of si-TOB1-transfected neutrophils with AGS or HGC-27 cells, along with EdU, invasion, migration assays, and bioinformatics analyses, aimed at elucidating the mechanisms through which TOB1 in neutrophils impacts the prognosis of gastric cancer patients. Results: We remarkably revealed that TOB1 exhibits varying expression levels in both the nucleus (nTOB1) and cytoplasm (cTOB1) of diverse immune cell populations, including CD8+ T cells, CD66b+ neutrophils, FOXP3+ Tregs, CD20+ B cells, CD4+ T cells, and CD68+ macrophages within gastric cancer and paracancerous tissues. Significantly, TOB1 was notably concentrated in CD66b+ neutrophils. Survival analysis showed that a higher density of cTOB1/nTOB1+CD66b+ neutrophils was linked to a better prognosis. Subsequent experiments revealed that, following stimulation with the supernatant of tumor tissue culture, the levels of TOB1 protein and mRNA in neutrophils decreased, accompanied by enhanced apoptosis. HL-60 cells were successfully induced to neutrophil-like cells by DMSO. Neutrophils-like cells with attenuated TOB1 gene expression by si-TOB1 demonstrated heightened apoptosis, consequently fostering a malignant phenotype in AGS and HCG-27 cells upon co-cultivation. The subsequent analysis of the datasets from TCGA and TIMER2 revealed that patients with high levels of TOB1 combined neutrophils showed better immunotherapy response. Discussion: This study significantly advances our comprehension of TOB1's role within the immune microenvironment of gastric cancer, offering promising therapeutic targets for immunotherapy in this context.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neutrófilos , Linfócitos T CD8-Positivos , Imunoterapia , Microambiente Tumoral , Proteínas Supressoras de Tumor , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Sci Rep ; 14(1): 5521, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448466

RESUMO

Silent information regulator 1 (SIRT1) is a NAD+-dependent class III deacetylase that plays important roles in the pathogenesis of numerous diseases, positioning it as a prime candidate for therapeutic intervention. Among its modulators, SRT2104 emerges as the most specific small molecule activator of SIRT1, currently advancing into the clinical translation phase. The primary objective of this review is to evaluate the emerging roles of SRT2104, and to explore its potential as a therapeutic agent in various diseases. In the present review, we systematically summarized the findings from an extensive array of literature sources including the progress of its application in disease treatment and its potential molecular mechanisms by reviewing the literature published in databases such as PubMed, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. We focuses on the strides made in employing SRT2104 for disease treatment, elucidating its potential molecular underpinnings based on preclinical and clinical research data. The findings reveal that SRT2104, as a potent SIRT1 activator, holds considerable therapeutic potential, particularly in modulating metabolic and longevity-related pathways. This review establishes SRT2104 as a leading SIRT1 activator with significant therapeutic promise.


Assuntos
Compostos Heterocíclicos com 2 Anéis , Sirtuína 1 , Compostos Heterocíclicos com 2 Anéis/farmacologia , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Bases de Dados Factuais , PubMed
3.
Heliyon ; 10(5): e27223, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455575

RESUMO

Paclitaxel is a potent anti-cancer drug that is mainly produced through semi-synthesis, which still requires plant materials as precursors. The content of paclitaxel and 10-deacetyl baccatin III (10-DAB) in Taxus yunnanensis has been found to differ from that of other Taxus species, but there is little research on the mechanism underlying the variation in paclitaxel content in T. yunnanensis of different provenances. In this experiment, the contents of taxoids and precursors in twigs between a high paclitaxel-yielding individual (TG) and a low paclitaxel-yielding individual (TD) of T. yunnanensis were compared, and comparative analyses of transcriptomes as well as chloroplast genomes were performed. High-performance liquid chromatography (HPLC) detection showed that 10-DAB and baccatin III contents in TG were 18 and 47 times those in TD, respectively. Transcriptomic analysis results indicated that genes encoding key enzymes in the paclitaxel biosynthesis pathway, such as taxane 10-ß-hydroxylase (T10ßH), 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT), and debenzoyl paclitaxel N-benzoyl transferase (DBTNBT), exhibited higher expression levels in TG. Additionally, qRT-PCR showed that the relative expression level of T10ßH and DBAT in TG were 29 and 13 times those in TD, respectively. In addition, six putative transcription factors were identified that may be involved in paclitaxel biosynthesis from transcriptome data. Comparative analysis of plastid genomes showed that the TD chloroplast contained a duplicate of rps12, leading to a longer plastid genome length in TD relative to TG. Fifteen mutation hotspot regions were identified between the two plastid genomes that can serve as candidate DNA barcodes for identifying high-paclitaxel-yield individuals. This experiment provides insight into the difference in paclitaxel accumulation among different provenances of T. yunnanensis individuals.

4.
Phytomedicine ; 127: 155478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452696

RESUMO

BACKGROUND: The increasing incidence of nonalcoholic fatty liver disease (NAFLD) has urged the development of new therapeutics. NAFLD is intimately linked to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for preventing NAFLD. Smilax china L. polysaccharide (SCP) possesses excellent hepatoprotective and anti-inflammatory activity. However, its protective effects on NAFLD remains unclear. PURPOSE: The goal of this study was to explore the protective effects of SCP on high-fat diet (HFD)-induced NAFLD mice by regulating hepatic fat metabolism and gut microbiota. METHODS: Extraction and isolation from Smilax china L. rhizome to obtain SCP. C57BL/6 J mice were distributed to six groups: Control (normal chow diet), HFD-fed mice were assigned to HFD, simvastatin (SVT), and low-, medium-, high-doses of SCP for 12 weeks. The body, liver, and different adipose tissues weights were detected, and lipids in serum and liver were assessed. RT-PCR and Western blot were used to detect the hepatic fat metabolism-related genes and proteins. Gut microbiota of cecum contents was profiled through 16S rRNA gene sequencing. RESULTS: SCP effectively reversed HFD-induced increase weights of body, liver, and different adipose tissues. Lipid levels of serum and liver were also significantly reduced after SCP intervention. According to the results of RT-PCR and western blot analysis, SCP treatment up-regulated the genes and proteins related to lipolysis were up-regulated, while lipogenesis-related genes and proteins were down-regulated. Furthermore, the HFD-induced dysbiosis of intestinal microbiota was similarly repaired by SCP intervention, including enriching beneficial bacteria and depleting harmful bacteria. CONCLUSION: SCP could effectively prevent HFD-induced NAFLD, might be considered as a prebiotic agent due to its excellent effects on altering hepatic fat metabolism and maintaining gut microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Smilax , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Fígado , Metabolismo dos Lipídeos , Polissacarídeos/farmacologia , China
5.
Biomolecules ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397385

RESUMO

The regulation of plant biomass degradation by fungi is critical to the carbon cycle, and applications in bioproducts and biocontrol. Trichoderma harzianum is an important plant biomass degrader, enzyme producer, and biocontrol agent, but few putative major transcriptional regulators have been deleted in this species. The T. harzianum ortholog of the transcriptional activator XYR1/XlnR/XLR-1 was deleted, and the mutant strains were analyzed through growth profiling, enzymatic activities, and transcriptomics on cellulose. From plate cultures, the Δxyr1 mutant had reduced growth on D-xylose, xylan, and cellulose, and from shake-flask cultures with cellulose, the Δxyr1 mutant had ~90% lower ß-glucosidase activity, and no detectable ß-xylosidase or cellulase activity. The comparison of the transcriptomes from 18 h shake-flask cultures on D-fructose, without a carbon source, and cellulose, showed major effects of XYR1 deletion whereby the Δxyr1 mutant on cellulose was transcriptionally most similar to the cultures without a carbon source. The cellulose induced 43 plant biomass-degrading CAZymes including xylanases as well as cellulases, and most of these had massively lower expression in the Δxyr1 mutant. The expression of a subset of carbon catabolic enzymes, other transcription factors, and sugar transporters was also lower in the Δxyr1 mutant on cellulose. In summary, T. harzianum XYR1 is the master regulator of cellulases and xylanases, as well as regulating carbon catabolic enzymes.


Assuntos
Celulases , Hypocreales , Biomassa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Hypocreales/metabolismo , Celulose , Carbono
6.
J Hematop ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418769

RESUMO

Hemophagocytic lymphohistiocytosis is a severe hyperinflammatory syndrome that can be potentially life-threatening without appropriate treatment. Although viral infection is the most common trigger of hemophagocytic lymphohistiocytosis, cases of herpes simplex virus type 1-induced hemophagocytic lymphohistiocytosis are rare in adults. This study aims to provide a comprehensive overview of the clinical characteristics and treatment outcomes associated with HSV-1-induced HLH. We herein report an adult case of hemophagocytic lymphohistiocytosis caused by herpes simplex virus type 1, diagnosed on the basis of peripheral blood metagenomic next-generation sequencing results. The patient exhibited a favorable response to treatment, involving dexamethasone, intravenous immunoglobulin, and acyclovir. Notably, etoposide administration was deemed unnecessary, and there has been no recurrence of the disease within the year following treatment. Early and sensitive recognition, rapid and precise diagnosis, and timely and appropriate treatment facilitated the successful treatment of this case.

7.
Nanotechnology ; 35(19)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38330450

RESUMO

Photocatalytic reduction of carbon dioxide is a technology that effectively utilizes CO2and solar energy. Sodium niobate (NaNbO3) has received much attention in the field of photocatalysis due to its excellent photocatalytic properties. However, the application of NaNbO3in the field of photocatalysis is still limited by poor reaction to visible light and easy recombination of photo-generated carriers. Heterojunction with g-C3N4to construct core-shell structure can effectively improve the above problems. Combining the two can design a core-shell composite material that is beneficial for photocatalytic reduction of CO2. Herein, we prepared a core-shell heterojunction g-C3N4/NaNbO3by uniformly impregnating urea on the surface of NaNbO3chromium nanofibers with NaNbO3nanofibers prepared by electrospinning as a catalyst carrier, and urea as a precursor of g-C3N4. The core-shell structure of g-C3N4/NaNbO3was verified by a series of characterization methods such as XPS, XRD, and TEM. It was found that under the same conditions, the methanol yield of core-shell g-C3N4/NaNbO3was 12.86µmol·g-1·h-1, which is twice that of pure NaNbO3(6.67µmol·g-1·h-1). This article highlights an impregnation method to build core-shell structures for improved photocatalytic reduction of CO2.

8.
Opt Express ; 32(3): 3316-3328, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297556

RESUMO

Structured illumination microscopy (SIM) is a powerful technique for super-resolution (SR) image reconstruction. However, conventional SIM methods require high-contrast illumination patterns, which necessitate precision optics and highly stable light sources. To overcome these challenges, we propose a new method called contrast-robust structured illumination microscopy (CR-SIM). CR-SIM employs a deep residual neural network to enhance the quality of SIM imaging, particularly in scenarios involving low-contrast illumination stripes. The key contribution of this study is the achievement of reliable SR image reconstruction even in suboptimal illumination contrast conditions. The results of our study will benefit various scientific disciplines.

9.
Opt Express ; 32(2): 1635-1649, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297711

RESUMO

High throughput has become an important research direction in the field of super-resolution (SR) microscopy, especially in improving the capability of dynamic observations. In this study, we present a hexagonal lattice structured illumination microscopy (hexSIM) system characterized by a large field of view (FOV), rapid imaging speed, and high power efficiency. Our approach employs spatial light interference to generate a two-dimensional hexagonal SIM pattern, and utilizes electro-optical modulators for high-speed phase shifting. This design enables the achievement of a 210-µm diameter SIM illumination FOV when using a 100×/1.49 objective lens, capturing 2048 × 2048 pixel images at an impressive 98 frames per second (fps) single frame rate. Notably, this method attains a near 100% full field-of-view and power efficiency, with the speed limited only by the camera's capabilities. Our hexSIM demonstrates a substantial 1.73-fold improvement in spatial resolution and necessitates only seven phase-shift images, thus enhancing the imaging speed compared to conventional 2D-SIM.

10.
Small ; : e2310615, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258355

RESUMO

High-entropy ceramics exhibit various excellent properties owing to their high configurational entropy, which is caused by multi-principal elements sharing one lattice site. The configurational entropy will further increase significantly if multi-principal elements randomly share two different lattice sites. For this purpose, pseudobrookite phase containing two cationic lattice sites (A and B sites) is selected, and corresponding high-entropy pseudobrookite (M2+ 0.4 M3+ 1.2 )Ti1.4 O5 is synthesized. Herein, the distribution of the 2-valent and 3-valent cations in the A and B sites are analysed in depth. The distance between the A and B sites in the crystal structure models which are constructed by the Rietveld analysis is calculated and defined as distance d. Meanwhile, the atomic column positions in the STEM images are quantified by a model-based mathematical algorithm, and the corresponding distance d are calculated. By comparing the distance d, it is determine that the 2-valent and 3-valent cations are jointly and disorderly distributed in the A and B sites in high-entropy (M2+ 0.4 M3+ 1.2 )Ti1.4 O5 . The density functional theory (DFT) simulations also demonstrate that this type of crystal structure is more thermodynamically stable. The higher degree of cationic disorder leads to a higher configurational entropy in high-entropy (M2+ 0.4 M3+ 1.2 )Ti1.4 O5 , and endows high-entropy (M2+ 0.4 M3+ 1.2 )Ti1.4 O5 with very low thermal conductivity (1.187-1.249 W m-1  K-1 ).

11.
Food Chem X ; 21: 101128, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292671

RESUMO

Thirteen kojic acid-coumarin derivatives were synthesized using the principle of molecular hybridization, and their structures were characterized by 1H NMR, 13C NMR, and HRMS. In vitro enzyme inhibition experiments showed that all newly synthesized derivatives have excellent inhibition of tyrosinase (TYR) activity. As a mixed inhibitor, compound 6f has the strongest activity, with an IC50 value of 0.88 ± 0.10 µM. Multispectral experiments have confirmed that the mode of action of compound 6f on TYR was static quenching. In addition, compound 6f formed a new complex with TYR, which increased the hydrophobicity of the enzyme microenvironment, reduced the content of the α-helix in the enzyme, and changed the secondary structure. The experimental results showed that compound 6f effectively inhibited the browning of lotus root slices and had low cytotoxicity. Therefore, compound 6f is believed to have great development potential as a TYR inhibitor in the food industry.

12.
Science ; 383(6681): 388-394, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271502

RESUMO

Identifying a suitable water-soluble sacrificial layer is crucial to fabricating large-scale freestanding oxide membranes, which offer attractive functionalities and integrations with advanced semiconductor technologies. Here, we introduce a water-soluble sacrificial layer, "super-tetragonal" Sr4Al2O7 (SAOT). The low-symmetric crystal structure enables a superior capability to sustain epitaxial strain, allowing for broad tunability in lattice constants. The resultant structural coherency and defect-free interface in perovskite ABO3/SAOT heterostructures effectively restrain crack formation during the water release of freestanding oxide membranes. For a variety of nonferroelectric oxide membranes, the crack-free areas can span up to a millimeter in scale. This compelling feature, combined with the inherent high water solubility, makes SAOT a versatile and feasible sacrificial layer for producing high-quality freestanding oxide membranes, thereby boosting their potential for innovative device applications.

13.
J Ovarian Res ; 17(1): 24, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273341

RESUMO

Premature ovarian failure (POF) is a leading cause of women's infertility without effective treatment. The purpose of this study was to investigate the protective effects of Luffa cylindrica fermentation liquid (LF) on cyclophosphamide (CTX) -induced POF in mice and to preliminarily investigate the underlying mechanisms. Thirty-two Balb/c mice were divided into four groups randomly. One group served as the control, while the other three received CTX injections to establish POF models. A 14-day gavage of either 5 or 10 µL/g LF was administered to two LF pretreatment groups. To analyze the effects of LF, the ovarian index, follicle number, the levels of serum sex hormones, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), inflammatory factors, and apoptosis of the ovarian cells were measured. The effects of LF pretreatment on the expression of TLR4/NF-κB and apoptosis pathways were also evaluated. We found that LF pretreatment increased the ovarian index and the number of primordial and antral follicles while decreasing those of atretic follicles. LF pretreatment also increased the serum levels of estradiol (E2) and anti-Müllerian hormone (AMH), while decreasing those of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Furthermore, LF pretreatment increased the levels of SOD and GSH in the ovaries, while decreasing those of MDA, tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). LF administration reduced the amount of TUNEL+ ovarian cells and the levels of TLR4 and NF-κB P65 protein expression. In conclusion, LF has antioxidant, anti-inflammatory as well as anti-apoptotic effects against CTX-induced POF, and the inhibition of TLR4/NF-κB and apoptosis pathways may be involved in its mechanisms.


Assuntos
Luffa , Menopausa Precoce , Insuficiência Ovariana Primária , Humanos , Feminino , Camundongos , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/metabolismo , Luffa/metabolismo , NF-kappa B/metabolismo , Fermentação , Receptor 4 Toll-Like/metabolismo , Ciclofosfamida/toxicidade , Estresse Oxidativo , Apoptose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Glutationa , Superóxido Dismutase/metabolismo
14.
Small ; 20(2): e2303464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670207

RESUMO

Silicon nanocrystals (SiNCs) have attracted extensive attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, these applications are mainly focused on fluorescent SiNCs, little attention is paid to SiNCs with room-temperature phosphorescence (RTP) and their relative applications, especially water-dispersed ones. Herein, this work presents water-dispersible RTP SiNCs (UA-SiNCs) and their optical applications. The UA-SiNCs with a uniform particle size of 2.8 nm are prepared by thermal hydrosilylation between hydrogen-terminated SiNCs (H-SiNCs) and 10-undecenoic acid (UA). Interestingly, the resultant UA-SiNCs can exhibit tunable long-lived RTP with an average lifetime of 0.85 s. The RTP feature of the UA-SiNCs is confirmed to the n-π* transitions of their surface C═O groups. Subsequently, new dual-modal emissive UA-SiNCs-based ink is fabricated by blending with sodium alginate (SA) as the binder. The customized anticounterfeiting labels are also prepared on cellulosic substrates by screen-printing technique. As expected, UA-SiNCs/SA ink exhibits excellent practicability in anticounterfeiting applications. These findings will trigger the rapid development of RTP SiNCs, envisioning enormous potential in future advanced applications such as high-level anti-counterfeiting, information encryption, and so forth.

15.
Exp Cell Res ; 434(1): 113877, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072302

RESUMO

Exploration of the molecular mechanisms of mesenchymal stem cell (MSC) growth has significant clinical benefits. Long non-coding RNAs (lncRNAs) have been reported to play vital roles in the regulation of the osteogenic differentiation of MSCs. However, the mechanism by which lncRNA affects the proliferation and apoptosis of MSCs is unclear. In this study, sequencing analysis revealed that LINC00707 was significantly decreased in non-adherent human MSCs (non-AC-hMSCs) compared to adherent human MSCs. Moreover, LINC00707 overexpression promoted non-AChMSC proliferation, cell cycle progression from the G0/G1 phase to the S phase and inhibited apoptosis, whereas LINC00707 silencing had the opposite effect. Furthermore, LINC00707 interacted directly with the quaking (QKI) protein and enhanced the E3 ubiquitin-protein ligase ring finger protein 6 (RNF6)-mediated ubiquitination of the QKI protein. Additionally, the overexpression of QKI rescued the promotive effects on proliferation and inhibitory effects on apoptosis in non-AC-hMSCs induced by the ectopic expression of LINC00707. Thus, LINC00707 contributes to the proliferation and apoptosis in non-AChMSCs by regulating the ubiquitination and degradation of the QKI protein.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Osteogênese/genética , Proliferação de Células/genética , Apoptose/genética , Células-Tronco Mesenquimais/metabolismo , Ubiquitinação , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
16.
Hum Cell ; 37(1): 245-257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993750

RESUMO

Nucleoporin 93 (NUP93) is an important component of the nuclear pore complex, exhibiting pro-tumorigenic properties in some cancers. However, its function in esophageal squamous cell carcinoma (ESCC) has not been elucidated. This study aimed to investigate the effects of NUP93 in ESCC and the underlying mechanisms involved. Through analysis of public human cancer datasets, we observed higher expression of NUP93 in esophageal cancer tissues than in normal tissues. Stable ESCC cell lines with NUP93 overexpression or knockdown were established by lentiviral vector transduction and puromycin selection. NUP93 knockdown suppressed the proliferation, colony formation, cell cycle transition, migration, and invasion of ESCC cells, while the overexpression of NUP93 displayed opposite effects. NUP93 positively regulated epithelial-mesenchymal transition and AKT signaling transduction in ESCC cells. In addition, NUP93 increased the expression of programmed death ligand 1 (PD-L1) in ESCC cells and attenuated NK cell-mediated lysis of ESCC cells. In vivo experiments demonstrated that NUP93 promotes the growth of ESCC in nude mice, enhances Ki67 and PD-L1 expression, and promotes AKT signaling transduction in xenografts. Mechanistically, we demonstrated that the HECT domain E3 ubiquitin protein ligase 1 (HECTD1) contributes to the ubiquitination and degradation of NUP93 and acts as a tumor suppressor in ESCC. To conclude, this study has shown that NUP93 has pro-tumor properties in ESCC and that HECTD1 functions as an upstream regulator of NUP93 in ESCC. These findings may contribute to the investigation of potential therapeutic targets in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Angew Chem Int Ed Engl ; 63(9): e202316640, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146810

RESUMO

The catalyst-reconstruction makes it challenging to clarify the practical active sites and unveil the actual reaction mechanism during the CO2 electroreduction reaction (CO2 RR). However, currently the impact of the electrolyte microenvironment in which the electrolyte is in contact with the catalyst is overlooked and might induce a chemical evolution, thus confusing the reconstruction process and mechanism. In this work, the carbonate adsorption properties of metal oxides were investigated, and the mechanism of how the electrolyte carbonate affect the chemical evolution of catalysts were discussed. Notably, Bi2 O3 with weak carbonate adsorption underwent a chemical reconstruction to form the Bi2 O2 CO3 /Bi2 O3 heterostructure. Furthermore, in situ and ex situ characterizations unveiled the formation mechanism of the heterostructure. The in situ formed Bi2 O2 CO3 /Bi2 O3 heterostructure with strong electron interaction served as the highly active structure for CO2 RR, achieving a formate Faradaic efficiency of 98.1 % at -0.8 Vvs RHE . Theoretical calculations demonstrate that the significantly tuned p-orbit electrons of the Bi sites in Bi2 O2 CO3 /Bi2 O3 optimized the adsorption of the intermediate and lowered the energy barrier for the formation of *OCHO. This work elucidates the mechanism of electrolyte microenvironment for affecting catalyst reconstruction, which contributes to the understanding of reconstruction process and clarification of the actual catalytic structure.

18.
EBioMedicine ; 99: 104920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101299

RESUMO

BACKGROUND: Oesophageal squamous cell carcinoma (ESCC) is a lethal malignancy. Immune checkpoint inhibitors (ICIs) showed great clinical benefits for patients with ESCC. We aimed to construct a model predicting prognosis and response to ICIs by integrating diverse programmed cell death (PCD) forms. METHODS: Genes related to 14 PCDs were collected to generate multi-gene signatures, including apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Bulk and single-cell RNA transcriptome datasets were used to develop and validate the model. We assessed the functions of two necroptosis-related genes in ESCC cells by Western blot, co-immunoprecipitation (Co-IP), LDH release assay, CCK-8, and migration assay, followed by immunohistochemistry (IHC) staining on samples of patients with ESCC (n = 67). FINDINGS: We built and validated a 16-gene prognostic combined cell death index (CCDI) by combining immunogenic cell death (ICD) and necroptosis signatures. The CCDI could also predict response to ICIs in cancer, as shown by Tumour Immune Dysfunction and Exclusion (TIDE) analysis, confirmed in four independent ICI clinical trials. Trajectory analysis revealed that HOOK1 and CUL4A might affect ESCC cell fate. We found that HOOK1 induced necroptosis and inhibited the proliferation and migration of ESCC cells, while CUL4A exhibited the opposite effects. Co-IP assay confirmed that HOOK1 and CUL4A promoted and reduced necrosome formation in ESCC cells. Data from patients with ESCC further supported that HOOK1 and CUL4A might be a tumour suppressor and oncogene, respectively. INTERPRETATION: We constructed a CCDI model with potential in predicting prognosis and response to ICIs in cancer. HOOK1 and CUL4A in the CCDI model are crucial prognostic biomarkers in ESCC. FUNDING: The Natural Science Foundation of China [82172786], The National Cancer Center Climbing Fund of China [NCC201908B06], The Natural Science Foundation of Heilongjiang Province [LH2021H077].


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Prognóstico , Neoplasias Esofágicas/metabolismo , Necroptose/genética , Apoptose/genética , Proteínas Culina
19.
Int J Surg ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38051925

RESUMO

BACKGROUND: Neoadjuvant administration of immune checkpoint inhibitors (ICIs) combined with chemotherapy demonstrated promising efficacy and manageable safety in locally advanced esophageal squamous cell carcinoma (ESCC). This prospective, single-arm, phase 2 study evaluated the efficacy and safety of neoadjuvant therapy with camrelizumab plus paclitaxel and nedaplatin for 2-4 cycles in ESCC. METHODS: Patients with locally advanced stage IIa-IIIb ESCC were enrolled in the study and received camrelizumab (200 mg), paclitaxel (155 mg/m2), and nedaplatin (80 mg/m2) intravenously on day one every three weeks. Patients underwent surgery after 2-4 cycles of treatment regimes. The primary endpoint was the pathological complete response (pCR) rate. Secondary endpoints included the major pathological response (MPR) rate, R0 resection rate, tumor regression, objective response rate (ORR), and disease-free survival (DFS). Programmed cell death 1 ligand 1 (PD-L1) expression in tumor tissues was measured and quantified using immunohistochemistry staining and combined positive score (CPS), respectively. RESULTS: In total, 75 patients were enrolled and received neoadjuvant treatment. Of them, 45 (60%) received two cycles, 18 (24%) received three cycles, and 10 patients (13.3%) received four cycles of neoadjuvant therapy. Ultimately, 62 (82.7%) patients underwent surgery. Patients achieved a pCR of 27.4% (95% CI 16.9-40.2), an MPR of 45.2% (95% CI 33.1-59.2), and an ORR of 48.4% (95% CI 35.5-61.4); all patients had an R0 resection. T and N downstaging occurred in 55 (88.7%) and 27 patients (43.5%). Moreover, ESCC patients with CPS ≥ 10 tended to have enhanced ORR, pCR, and MPR compared to those with CPS < 10. Treatment-related adverse events (TRAEs) of grade 1-2 occurred in 59 (78.7%) patients, grade 3 TRAEs in four (5.3%), and one patient (1.3%) experienced a grade 4 TRAE. CONCLUSIONS: Neoadjuvant camrelizumab combined with chemotherapy showed promising efficacy in locally advanced ESCC, with a manageable safety profile, when administered flexibly in two to four cycles.

20.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040655

RESUMO

AIMS: Botrytis cinerea is a pathogenic fungus that infests multiple crops, which causes a severe decrease in yield and generates substantial losses in the economy. Palmarosa essential oil (PEO) is a primary aromatic compound extracted from palmarosa that is commonly used for scent, medicine, and flavoring foods due to its diverse bioactive properties. In this study, we explored the antifungal activity and the main mechanism of action of PEO against B. cinerea. In addition, the components and control effects of PEO were also studied. METHODS AND RESULTS: The antifungal assay was tested using the mycelial growth rate method and colony morphology. The constituents of PEO were identified according to gas chromatography/mass spectrometry (GC-MS). The main mechanism of action of PEO was evaluated by measuring representative indicators, which consist of cell contents leakage, excess reactive oxygen species (ROS), and other related indicators. The results indicated that at a concentration of 0.60 ml l-1, PEO exhibits strong antifungal activity against B. cinerea. The PEO mainly included 13 compounds, of which citronellol (44.67%), benzyl benzoate (14.66%), and acetyl cedrene (9.63%) might be the main antifungal ingredients. The study elucidated the main mechanism of action of PEO against B. cinerea, which involved the disruption of cell membrane structure, resulting in altered the cell membrane permeability, leakage of cell contents, and accumulation of excess ROS. CONCLUSIONS: PEO is a satisfactory biological control agent that inhibits B. cinerea in postharvest onions. PEO (0.60 ml l-1) exhibited strong antifungal activity by disrupting the cell membrane structure, altering cell membrane permeability, leading to the cell contents leakage, accumulation of excess ROS and increased level of Malondialdehyde (MDA) compared to the control group.


Assuntos
Antifúngicos , Óleos Voláteis , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Cebolas , Espécies Reativas de Oxigênio , Botrytis , Doenças das Plantas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...